
Visualizing courses

Improved Tools for University Course Planning

Andreas Olsson
Uppsala university

Andreas.Olsson.9761@student.uu.se

March 21, 2012

Contents

1 Introduction 5
1.1 Background . 5

1.1.1 A brief course overview . 5
1.1.2 Compulsory courses . 5
1.1.3 Technical courses . 5
1.1.4 Advanced courses . 5

1.2 Objective . 6
1.2.1 Prior work . 6

1.3 Current tool . 6
1.3.1 Working with the graph . 6
1.3.2 What you see is what you get . 7

1.4 Limitations . 8
1.4.1 Cost . 8
1.4.2 Database synchronization . 8
1.4.3 User management . 8

2 Theory 9
2.1 Information Visualization Basics . 9

2.1.1 Explorative and Confirmative Analysis . 10
2.2 Visualizations . 10
2.3 Processing the information of the current graph . 10
2.4 Desired visualizations . 10

2.4.1 Course graph . 11
2.4.2 Course graph meta information . 11
2.4.3 Study syllabus feedback . 11
2.4.4 Study syllabus goals and progress . 11

2.5 Information Visualization in twenty weeks . 11

3 Understanding Requirements 12
3.1 Requirements Process . 12

3.1.1 Process Models . 12
3.1.2 Process Actors . 12
3.1.3 Other topics . 12

3.2 Requirements Elicitation . 12
3.2.1 Interviews . 13
3.2.2 User observation . 13

3.3 Requirements Analysis . 13
3.3.1 Debug . 13
3.3.2 Plan . 13
3.3.3 Visualize . 14

3.4 Requirements Specification . 14
3.5 Requirements Validation . 14

3.5.1 Paper prototyping . 14
3.5.2 New input from user . 14

3.6 Speeding up requirements . 15

4 Methods 16
4.1 Result-oriented design . 16
4.2 Why web based application? . 16

4.2.1 Security and personal integration . 16
4.2.2 Speed and performance . 16

4.3 Using a software architecture . 17
4.3.1 The Model-View-Controller Pattern . 17
4.3.2 Web specific MVC patterns . 17
4.3.3 Other software architectures . 18
4.3.4 MVP . 18
4.3.5 MVVM . 18

2

4.3.6 Zend specific MVC structure . 18
4.3.7 Zend Framework . 18
4.3.8 Zend alternatives . 18

4.4 Creating an API . 19

5 Result 20
5.1 Workshops and User Interaction . 20
5.2 Application . 20

5.2.1 Forms . 20
5.2.2 Relationship and reaction . 21
5.2.3 Conversation . 21
5.2.4 Appearance . 22
5.2.5 Other considerations . 22
5.2.6 Drag-and-drop . 22

5.3 Analyzing and rebuilding graphs . 22
5.3.1 Course graph . 22

5.4 Course graph meta information . 26
5.4.1 Study syllabus feedback . 28
5.4.2 Study syllabus goals and progress . 28
5.4.3 Summary . 28

6 Discussion 31
6.1 Methods discussion . 31
6.2 System improvements . 31

6.2.1 Export possibilities . 31
6.2.2 Multiple views . 31
6.2.3 Selma Connectivity . 31
6.2.4 Better user feedback . 31

6.3 Graph improvements . 31

7 Conclusions 33

8 Acknowledgements 34

3

Abstract

It is important for University students to be able to have a clear picture of their education, both
what they have accomplished so far and what is ahead of them. Students at the technical faculty
have a lot of freedom to study a great variety of courses.

But with great freedom comes great responsibility. The problem is the lack of information given
to the students about their progress towards graduation.

This master thesis was made to find ways of visualizing the Information Technology program.
The goal was to find visualizations that, at a later stage, could be made interactive and serve as a
guidance tool for students.

The work resulted in various graphs that presents the study program, as well as some interactive
visualizations made from an application that served as a proof of concept on how the tool could work.

4

1 Introduction

Being a student in the technical faculty at Uppsala university comes with lots of responsibility and
planning. Responsibility in a way that all students applies to each single course themselves, and
planning because of how many di↵erent ways the courses are connected and related to each other.
To be able to study in a program at the faculty, with a specified orientation, students must know a
whole bunch of things before starting to plan their education. The relation between courses, which
ones are compulsory, what classification a course have, and much more.

This master thesis aims at helping out in this issue, by providing aid in the form of graphic
visualizations that, together with an application can help students in getting a better overview of
their education.

The first part of the thesis will go through the basics in course structure, relations and classifica-
tions, in order for the reader to fully understand the problem domain.

1.1 Background

The program directors at the technical faculty has a desire to present the programs and then visualize
it in a graphical way. The ambition is to get a clearer overview of the study syllabuses in order to
describe, debug and improve them. Describing them to students, in the beginning of their education,
gives them a better overview of the years ahead of them. For debugging and improvement, this could
be a useful way to find courses with dead end relations, compulsory courses that are not required at
higher levels, and other unwanted issues.

1.1.1 A brief course overview

The rules at the technical faculty are generally that, after three years of studies, students can pick
from a wide range of courses and create their own study syllabus for their remaining period of studies.
But passing compulsory courses are not the only restriction they are dealing with. Students must
take courses of certain classifications in order to receive their graduation. For example, some courses
are classed as being advanced courses, and a certain amount of advanced courses must be passed for
graduation. Both information and validation about these classifications sometimes vary, depending
on what year you engaged your studies, what kind of exam you intend to take, or simply by who you
ask. This undermines the ability to create a study plan that are valid through the entire education,
and it generates uncertainty among the students in terms of what courses to actually take. Today,
the correct information is very hard to find, which is one of the problems that this master thesis is
based on, and tries to solve.

The following sections will further explain the concepts of compulsory, technical and advanced
courses. Other classifications exists, but are left out since they are not crucial for the exam, as these
three.

1.1.2 Compulsory courses

Compulsory courses makes up most of the first years when studying in a program at the faculty. In
order to graduate, one must complete all these courses. This sounds quite fundamental, but fuzziness
arises because of the fact that one course may be compulsory for one year cohort, and optional for
another, and this is basically where the problem starts. The reality is not that all students always
finish their education in the contemplated time. A major part of the students studies for a longer
time than intended which means that some fellow students have di↵erent compulsory courses, within
the same program.

1.1.3 Technical courses

Some courses grants something called technical points. These points represents courses of technical
character, and a certain amount of these points are required for graduation. Information about this
also vary from year to year and the education planning, where the information is supposed to be
shown, contains some errors providing extra uncertainty.

1.1.4 Advanced courses

Advanced courses could be described as the next level of courses available to the students. In order
to take these courses, a certain amount of basic courses needs to be completed, and in order to
graduate, a certain amount of advanced courses is needed. As mentioned earlier, students generally
pick their own courses after three years of studies. This is because after three years of completed
studies, students in general have granted access to the advanced courses.

5

The complexity and vague course information is not just a student problem, but also an adminis-
trative one. As a program director in the faculty, good overview and relationship between courses are
essential to substantialize the program. Getting a clear structure and overview also helps others to
understand how programs are constructed and what possibilities they bring. Something that could
be used for future students.

This master thesis is based on these issues, projected by program director at the computer and
information engineering program at Uppsala University in the spring term of 2011.

1.2 Objective

The objective of this master thesis is two sided. First is, analyzing and improving the original tool
that is used today for visualizing courses. The goal is to concretizes what is actually shown, and put
in comparison to what information that should be displayed. The thesis will examine di↵erent ways
to visualize information and from that describe the methods best used for this domain.

Second objective is to build an application that can be used to build and configure and visualize
study syllabuses, and from that present their essential information. Such information could include,
the relation between courses, the direction of the syllabus, and progression throughout the period
of studies. The progression is one of the challenges within this project. Today, there is no way to
really visualize how knowledge gained from one course are used in subsequent courses. Lots of this
knowledge are from laboratory practicals, with the intention to use later on. This application could
be used as a debugging tool for these situations. Walking through a study syllabus one could point
out where knowledge are left unused and regain the continuity.

Visualizing the outcome of the study syllabus could also help communicating the possible orien-
tations the education has to o↵er.

1.2.1 Prior work

This project is based on an early project by Mattias Larsson, a fellow student at the computer and
information engineering program. He created a Java Swing application for displaying relationships
between courses, in a structure quite similar to the original study syllabus graph [9]. Some of these
ideas are present in this project, but the main foundation is the substantial database structure that
was created.

The database represents the relationship between course syllabuses, course instances, teachers,
faculties (among many other things) in a way that is very close to reality. This saves a lot of time
for this project since it provides a good structure on how things at university are connected. A good
database structure of a system provides a lot more meta information than one might think at first.

In an early phase of this master thesis one idea was to simply continue working on the existing
Swing application. But the job initiator pointed out that no special platform was desired. A web
based application would be used to aid the graphs, basically since it would be easy to maintain and
distribute. Creating a modular application is a good idea since the project time of twenty weeks
would not be enough to cover this issue. A more realistic goal for this application would rather be
as a proof of concept.

1.3 Current tool

Today, a graph editor is used to plan and visualize the study syllabuses. The editor, yEd, is a powerful
tool for creating di↵erent kinds of graphs and diagrams. The downside to using such a powerful and
complex tool all the unnecessary elements and functions. And despite its complexity, quite a few
problems emerges. A tailor made application could provide a streamlined interface and better suited
functionality.

The problems discovered with this tool can be classified into two groups. First, the work progress.
How is the program to work in and what could, essentially from a GUI perspective, be improved.
Second, what information can be derived from the graphs. How can it be used, and what conclusions
can be drawn.

Figure 1.3 shows a slice of the graph, and the whole thing can be viewed in Appendix A.

1.3.1 Working with the graph

What becomes evident when working with a whole study syllabus in yEd is how hardware demanding
it becomes. Trying to include all di↵erent courses in one tree structure would be quite heavy on most
programs, so there is no say that yEd is particularly slow on this matter. The problem is the great
amount of courses in one plain tree structure. The tool created for this thesis has no requirements
on performance or that perspective whatsoever, but it should be able to scale down or isolate certain
part of its corresponding structure in order to avoid resembling problems.

6

Figure 1: A piece of the current graph, created in yEd.

Another problem is that yEd isnt a very good tool for this specified task. Its a graph tool, which
is fine, but graphs should be used for information visualization and they are just one way of doing
that. A better approach to using a tool for this task would be to, first plan and build, and then
visualize. Building in the visualization environment makes no real sense. Its a shortcut, where lots
of crucial information is lost.

Also, planing with this tree structure makes little room for change. Given todays tool, its very
hard to insert courses in the middle of the graph. Its quite like entering a new generation, between
two existing, when making genealogical research. This is quite a large problem, since lots of courses
changes from year to year. If the tools should be useful over a longer period of time there must exist
a way to handle variations of the same study syllabus.

1.3.2 What you see is what you get

One of the fundamentals of this master thesis how to visualize course information and the current
tool is the benchmark of this. From this, its crucial to analyze what information the current tool
really tells.

As mentioned earlier, the graph used today is a complete set of all the courses in the faculty. This
means that it tells us all information at the same time, but despite being so huge it contains very
little information. So basically, what you see is what you get, or even less than that. Each course
holds the information of its starting period, points, classification and dependency to other courses.
These are the basics, but there are no correlation between them. No real conclusions, for example
sum of points over a period of time, can be made from this graph. In this sense, the information is
very static, and from that, quite useless.

As of today, the graph is often displayed to students, showing them the di↵erent options and
possibilities within the program. One recurring event is the program course exhibition, a service
where all courses are displayed for students. At the exhibition students can learn more about courses,
orientations and their own possibilities. This is a good arena for this tool where this information
is displayed. The problem here is that the information isnt personal for each student, but gives all
information at the same time. From the student perspective, one would like their own path through
the graph, and their selected courses. This is not possible with todays tool.

In a similar way, one would also like the possibility to isolate a certain orientation, year or part
of the graph for a closer look. Most students arent in their first years and have thus completed a
major set of courses. From their perspective it would be more interesting to look at their remaining
options, rather than their past.

7

Given the analysis of the current graph tool, the returning problem is that the graph displays
all information at the same time, and still fails to show enough. Things like detailed information,
isolation possibilities or personal planning isnt possible. One thing to keep in mind when trying to
find new ways for visualization, is the realization of using only one graph. Perhaps a combination of
di↵erent tools could be a better choice. Perhaps the five year program itself is to complex to visualize
in just one tree graph.

1.4 Limitations

This section is used to concretize the extent of the project. The parts described below are all left out
on the same ground, to maintain focus on the main issue. This project should be about planning,
testing and visualizing study syllabuses. Focus should be on usability and information visualization.

The purpose of this section is also to put this single-driven project in comparison to real IT
projects, as a way of personal education.

Some of these parts could be seen as future work, and by keeping that in mind, the system should
be that modular to support (or at least not undermine) the the possibility to add such extensions.

1.4.1 Cost

Naturally, since this is a master thesis, cost can be completely left out. In reality, money is a major
player when carrying out a project. On some level, cost could be reduced by creating a modular
application with rigid documentation, but that is rather a technical goal than an economic one.

1.4.2 Database synchronization

Lots of information related to this project are stored in a database by the name Selma. Selma is the
university education database, storing information such as course syllabuses, information on course
literature, course moments, and much more [12].

Future ambitions for these kinds of applications would naturally be to provide seamless synchro-
nization in order to keep information updated.

1.4.3 User management

This system will not support user management, but that is probably something that can be found
quite high in the stack of future work. The application allows one user, preferably the program
director, to create and edit study syllabuses for presentation. But in a longer run, that functionality
should be used for students to create their own syllabuses, since it is a big part of the issues that are
the basis of this project.

8

2 Theory

This section presents the theory used for this thesis. A lot of this part deals with information
visualization and how it can be applied to the domain of this project.

One of the key point is to visualize the courses, their parameters and relations. Information
visualization engages humans to create internal constructions in their minds [13]. What this basically
means is that, with the use of pictures, humans can spot relations, draw conclusions and summarize
large amounts of data. This cognitive activity cannot be displayed or printed. Computers can display
information, but the information processing is an activity that goes on in the mind. Information is the
key in this project. From a given course graph, information visualization techniques and terminology
was used to create new ways to display the same information. An optimal visualization would provide
as much information as possible, with a very simple structure.

Building graphs that corresponds to, and adds information to the original graph can be a time
consuming process. In general, this process can include requirements gathering, graph building and
user evaluation. Given a time scope of twenty weeks, methods that can speed up such a process are
of interest.

2.1 Information Visualization Basics

Whats important to acknowledge when it comes to information visualization, is that it is more than
just graphs and charts. In everyday life, people are projected to large amounts of di↵erent information,
from di↵erent informatics, saying lots of di↵erent things. All, from incoming e-mails to commercials
or street signs are information that are processed, analyzed, remembered or discarded. This large
amount of information tells us two things. First, its not very hard to display information. It seems
like everybody are able to do it. Second, the hard part seems to be on how to visualize it the correct
way. It does not seem like a good idea to just blow things out of proportion with blinking lights,
alerts, paper clips, and other things to get the user attention. A better approach is to find out how
to show the correct information.

Pictures and sketches are one of the most used tools when presenting ideas to each other. Visual
representation helps us in describing something, perhaps a relation, that is to hard or complex to
describe with words. Its often used as a way of giving the user as much information as possible on a
very limited space [10].

Information visualization is not a new phenomena. The most common example of early infor-
mation visualization (which seems to be mandatory for all books within the area) is the famous
Napoleon’s March, shown in figure 2. Charles Joseph Minard, a french civil engineer, created a flow
chart that described the loss for Napoleons army during the Russian campaign of 1812. Vastly sim-
plified, the graph shows the path of Napoleon’s army and how it decreased, visualized by getting
thinner, during the march towards Moscow. The black part shows the retreat and it shows the loss
the army su↵ered from marching out to the homecoming.

Minored’s graph is widely used and has been dubbed “one of the best statistical graphs ever” [14].
That is probably the reason for serving as a fundament in a major of the literature in this area. The
graph displays quite large amount of information in a pretty simple figure, which is something to aim
for in this master thesis.

Figure 2: Napoleon’s march

9

2.1.1 Explorative and Confirmative Analysis

Exploratory data analysis is an approach to analyze and summarize the main characteristics of data
sets. In this problem domain, this could be summarizing the most evident information for each study
period in a way that helps students in their choices. This is a well-used method for identification
of relationships, patterns or properties among data sets. A common domain for this approach is by
describing properties among the population on a map, for example electoral maps or the number of
discoveries of a certain disease within a closed area. Explorative analysis was used when exploring
new ways to visualize course and study information.

Visual analyzation also carries out confrontative analyses by looking at relationships. This is used
to confirm hypotheses about future data. An often used example is the stock market. Looking at the
correlation between two markets trying to predict how the a↵ect each other.

2.2 Visualizations

As described earlier, information visualization is the process of forming a mental model of information.
It is a cognitive activity, where processing of information goes on in the mind by forming images or
mental models of the information. This is done by using something called mental models. A mental
model is the explanation of the thought process about something in the real world. Its a way of
describing the world around us. There are many examples of why the use of images are better then
textual descriptions. First, the elements used in visualizations always have a physical localization.
The relation between them, and their positions, can contain information. Second, using visualization
minimizes the use of labels. Humans have better ability to remember shapes and forms, rather than
text [4].

2.3 Processing the information of the current graph

The key problem with the original graph is that it does not support users to use mental models of the
given information. It is hard to grasp the large amount of perceptual information that is presented.
What this means in context of the course graph is that it should be able to produce information that
is not directly displayed. An example of this could be telling information about when a course starts,
by its position in the graph. The graph does not seem to provide any extra information than what is
already printed on, and between, each course. At the same time, the most crucial information is also
distracting.

The current graph basically provides four di↵erent sets of information. Course requirements
and relations, course points and pace, when the course are held and the classification. Given the
complexity of the graph, it is quite cheap on information. From this point of view, a number of
questions occur.

• Can relationships among courses be described in another way than using large arrows? Using
arrows to connect entities are by far the most common visual representation, and it is a straight-
forward one. The only problem is that the relation arrows catches too much attention. Usually
when looking at courses, we are only interested in one relationship at the time. The current
graph displays them all up front.

• What information is needed for the students? Should the graph contain more information, or
provide the same but with a simpler structure? The most useful tools for students are the ability
to see their required courses future possibilities, as well as the required number of required points
for each classification. Most of this are not provided by the current graph.

• Is one visualization enough? Perhaps all information that is needed for the students can not be
provided by a single graph. By separating the whole study program from an individual study
syllabus, lots of di↵erent information can be reclaimed. This separation seamed necessary for
providing a useful and somewhat dynamic tool.

2.4 Desired visualizations

Courses can be visualized in so many ways and tell di↵erent information. The key motivator behind
choosing what visualization to use is to focus on supporting the users. Support for the students
should be given in a way that makes it easier for them to grasp their educations, and support for
program accountable in a way that it provides a good overview of the program and study syllabuses.
To be able to debug what is planned, is one expressed requirements, prior to building the application.
From two keywords, support and debug, the implemented visualizations is as follows.

10

2.4.1 Course graph

The course graph is, in many ways, the reason for this project to begin with. In that sense, it could
be considered the main objective and as previously mentioned, this graph is an attempt to summarize
an entire education by showing all available courses and their relations.

But one important question is whatever this is the best way to visualize information. To decide
this, the graph is dissected and analyzed, in order to decide what information it actually tells us.
Could that information be presented in a better way, and is there more valuable things that can be
presented?

A major part of the work process embraces the concept of trial and error. By testing di↵erent
ways of visualize the same information, new ideas and information can be extracted from that. From
these ideas, new graphs is created, and so on.

2.4.2 Course graph meta information

Ideas of meta graphs, or supporting graphs is used. It is feared that not all information can be provided
in one single graph, and it is therefore decided to elaborate with complementary visualizations. These
can, among other things, tell such information as what type of courses are given, what skills are
transmitted and what type of education forms are used.

Both students and program directors are target group for this kind of visualization. For the
students, it may be interesting to see what type of profile their education are transforming into.
For those in charge of planning, it may be interesting if the students are following the contemplated
orientations, or if most of them are choosing their own path. Perhaps, new profiles could emerge
from this.

2.4.3 Study syllabus feedback

Eventually, the goal of this project is to provide support for the students. And since students are
given the freedom to choose most of their courses supporting graphs and visualizations within this
area was also of high interest. The study syllabus graph should be used as a personal planer, allowing
the students to get a clearer view of their past, present and future studies.

Feedback on the individual courses could provide useful information. Initially, its a good way of
verifying that all mandatory courses within the program are taken. But also by showing what kind
of education, in terms of skills and orientation, that is taken. Good visualizations could also help the
students to orient themselves during their education. They could get a clearer picture on what to
study in order to reach a specific course or education profile.

2.4.4 Study syllabus goals and progress

With the graphs that would display the individual study syllabus for each student, one of the key ideas
is to show at which time in their education they would reach the critical points. Since the education
requires enough technology credits, required courses and advanced courses, this visualization is one
of the most important.

The idea was to show when, during their education, they would achieve this result, perhaps with
a timeline where they could be highlighted.

With the use of a timeline as a reference, it would be possible to display the progress for each
individual student, which would facilitate orientation. An indirect target for this is the ability to
encourage students to give priority to the main courses that gives the desired points.

The graph of progress and goals will serve as an additional motivator for the students throughout
the program and hopefully it can help to guide them when they seek new courses.

2.5 Information Visualization in twenty weeks

Information Visualization can be a rather complex. As mentioned earlier, it can be challenging to
present the right information. Even though much time is spent during the pre phase of creating the
visualization, it is no guarantee that we are successful in transmitting the right information.

As described earlier, the visualizations have a rather large target audience as both students and
administrative sta↵ are of interest. This would mean that the background research and requirements
process can be quite rigorous. Given the time scope of twenty weeks and the ambition to present
some kind of visible result, other methods are considered.

A method that could be used to produce graphs in a larger quantity is of interest. These graphs
could then be matched to the goals of study syllabus feedback, goals progress and all other desired
visualizations.

11

3 Understanding Requirements

Software Requirements, the general name given to the activities involved in finding out the require-
ments for a system and its functionality, is a large area within the human-computer interaction (HCI).
It could easily engage a master thesis on its own, but since this thesis needed to produce some sort
of product in a limited amount of time, this part of the project would have to su↵er from cutbacks.
Instead, the idea for this project would be to understand the importance of requirements elicitation
and get practical experience of some of the methods that could be used. Before digging in to the
definitions and methods used on this projects, some fundamentals should be straightened out.

In software engineering, the definition of a software requirement is a property that must be used
to solve a particular software problem. What the problem are may vary at a wide range, but could
be automation of a process or meeting security standards. It is not rare that problems rises from
dissatisfaction of a current system, and the tricky part is often to verify the problem and transform
it into a concrete requirement. Software systems where these parts have been poorly executed are
often critically vulnerable [1]

Product and process requirements are also two significants that could easily be mixed up. Product
requirements, which will be what were dealing with here, deals with requirements for a system or
a product, while process requirements are linked to the developing organization. They are often
connected to each other in such a way that process requirements can be used to specify how the
product requirements will be satisfied.

Understanding the di↵erence between, and specifying, functional and non-functional requirements
are one of the first things to do. Functional requirements describes the specific functions of a software,
or what the software should be able to do. Non-functional requirements deals with the surroundings,
such as safety and reliability requirements. This project has only considered functional requirements.
Non-functional requirements should be considered in later stages. If this software is to be used by a
large number of students, performance will be a non-functional requirement. Also security will serve
as a non-functional requirement if there should be a connection to the Selma Database, containing
critical information about all courses.

3.1 Requirements Process

The requirements process is basically where all tools for gathering requirements are set. This stage
includes defining process models, process actors, process support and management.

3.1.1 Process Models

Process models are mainly used for estimation, prediction, calibration, and optimization. What this
basically means is that there are produced models for this four steps, within requirements engineering.
Estimation is the concept of determining the values used in the observed space, whereas prediction has
the goal to predict values of new user observations. The goal of calibration is to quantitatively relate
measurements made using one measurement system to those of another measurement system. Opti-
mization is used to maximize the outcome of a process and reducing the time spent on prefabricating
the product at a later stage.

3.1.2 Process Actors

This topic of the requirement process introduces the roles in the requirements process. There are
often many people involved, and often do they have di↵erent interest. A major part of requirements
gathering is to define all roles and se how they are connected. It is not unusual that some roles have
contradictory interests in a system, which needs to be sorted out and compared. In similar manner,
some roles may have corresponding requirements, implicating that this may be something to focus
on. Example of actors are often, users, stake holders, customers and software engineers [1]. In this
project the client will serve as both user and stake holder.

3.1.3 Other topics

Other topics within the requirements process describes process Support and Management, which
links process activities to costs, human resources, and other things. Along with process quality and
improvement, they are more suited for large scale projects and are not used in this thesis.

3.2 Requirements Elicitation

Elicitation is the process of defining where the requirements comes from and how they are collected.
Requirements elicitation is often the first step in understanding the problem domain and building the
software to solve it.

12

The elicitation techniques that has been used in this project is interviews and user observation.
Both techniques are well suited for projects where the users are quite a few in number. They are
both time consuming, but very giving.

3.2.1 Interviews

The interviews for this project is conducted with the potential user, and client. The interviews shows
how di↵erent it is to interview someone on the same side of the fence. Working with information
technology and being at the faculty for a long time, the client knows more then well about the
processes of eliciting requirements. This makes it quite hard to be in control, since the expert role
shifted towards the interviewee, who always seems eager to “cut to the case”.

All in all, interviews are one of the most basic techniques for eliciting requirements, and its still
one of the best. Although some may say that it is time consuming it gathers a solid foundation of
information to base the future work on. One great advantage with the technique is that it is simple
and cheap [3].

3.2.2 User observation

What was discovered in this project is how user observation can serve new ideas. Observing how
someone works, while describing what they are doing often raises questions on how things could be
di↵erent. This is something that needs to be taken into consideration for the observer, not to ask
questions or plant ideas in the workers head.

3.3 Requirements Analysis

Requirements Analysis is the process of analyzing the requirements gathered from the previous step.
This is done to expose conflicting requirements and defining the boundaries of the system [1]. Con-
flicting requirements was not really an issue in the sense that di↵erent actors had conflicting interests.
However, the work within this project needed to match the requirements for this master thesis. Set-
ting the boundaries to suit a twenty week project was the bigger issue here.

Conceptual modeling is a method often used at this stage of the process. The conceptual model,
which should be independent from design and implementation phases, is used to clarify terms and
concepts that are often used within the work domain. This is way to sync the language between the
involved parts of this project. For this project, not much e↵ort was put in this section since all actors
were on the same page. The conclusion that was drawn, after studying the idea behind conceptual
modeling is that it could be used when at least one of the following conditions occur.

• If the problem domain is complex and the requirements analysts needs knowledge of special
conditions, terminology or concepts.

• If the project involves a larger group of actors. This could easily lead to misunderstanding
which could be avoided by syncing the terminology.

• If the system is at a larger scale. In this case using tools as Unified Modeling Language (UML)
or Entity Relationship Modeling. These tools could be used to describe the problem domain in
a graphical way.

Requirements classification is the process where we start to digging in to the requirements in
order to sort them as functional or non-functional, product or process requirements, how they will
change over time, among other things. In this project, this was a fundamental part as it had to focus
on functional requirements that could be solved within the given time span. From the elicitation
process, three main requirements or objectives were defined.

3.3.1 Debug

The tool should be able to use as a debugging tool when experimenting with study syllabuses. This
is derived from the idea that each course within a program should have some meaning, prepare the
student for coming courses, or be within a certain area of science. This tool should be able, from
a given set of courses, be able to visualize their relations to make sure these conditions exists. If a
course is presented as mandatory, but without any openings to new courses, it would be very hard
to motivate its existence.

3.3.2 Plan

System users should be able to plan new study syllabuses. This a↵ects teachers, course classifications,
start dates, among other things. A fundamental part in ease the planning process is by giving
feedback. More about the use of feedback within this project is described in section 5.2.6.

13

3.3.3 Visualize

A large area of use for this system will be to visualize courses to students and personnel at the faculty.
This requirement derived mainly from the current tools, that was used to create a giant graph of all
courses at the program. All in all, the giant graph provided the correct course information, among
with their relations. But it lacked scaleability. All information was showed at once, and it was made
worse by displaying it on a projector with limited screen resolution and inferior sharpness. This not
only gave room for direct improvements, but opened the door to new ideas.

Visualizing courses, relations, progress can be done in so many di↵erent ways and towards di↵erent
audiences. This area had the potential to grow out of proportion if not tighten at an early stage.
Within the given time span, it would seem fair to experiment with some di↵erent ways to visualize
courses, but further evaluations of this area should be left for future work.

3.4 Requirements Specification

In software engineering, requirements specification often means producing documents that could be
reviewed and evaluated [1]. These documents records the system requirements which are often pre-
sented in a system requirements specification and a corresponding software requirements specification.
These documents can be set in proportion to other variables of a software project, such as cost and
performance. The relations are often done with help from quality indicators.

For this project, no documents on this level are produced since it is considered to be time consum-
ing without giving any extra input. Instead, the documents used to represent this step are interview
transcripts and ideas scribbled on notes and papers. The choice to not go through this step com-
pletely has much to do with the fact that there is really just on actor involved. Potential involvement
of more could be possible when evaluating on how to visualize the courses. That could not be done
until the next step.

3.5 Requirements Validation

The documents produced in the requirements specification is the foundation of the next step, the
validation to requirements. This is the part of the process where the users and stakeholders are
reconnected in prototyping, validation and acceptance testing.

3.5.1 Paper prototyping

Paper prototyping is one of the prototyping methods that seems most useful when designing a graph-
ical user interface (GUI) for a system. This is a way for developers to validate the requirements that
was set in previous steps. It seems like an interesting method since it is widely used, even after the in-
troduction of di↵erent prototyping software tools. One key benefit to letting simple paper structures
visualize a GUI is that it focuses on workflow and interaction, rather than design. If it is obvious that
this is not the final product, the users (or who ever tries it) are less focused on design details. For
this project it should work well enough when designing a paper prototype of the planning tool. This
part of the system consists of simple and well known elements, such as forms, buttons and textfields,
which could easily be transformed to a simple paper mockup.

But there are some when dealing with visualization. Presenting di↵erent types of graphs and
graphical elements is not suited for the paper prototyping method. Some graphs should, for example,
feature direct feedback on mouseover events, which is hard to implement on paper. Another problem
is related to the kind of data presented. The problem is to create a simple paper mockup of a
complex and interactive graph, that responds of user input. With these kinds of problems in mind,
new methods of creating mockups should be considered in future projects.

3.5.2 New input from user

One interesting thing about paper prototyping is how the process seems to spark new ideas. The
expected result is that paper prototyping should test the workflow from a settled functionality. But
while walking through the process with the client, new ideas grow and is enthusiastically expressed.
This could probably be more controlled if extended input is put in the preparation and implementation
of the process. But there is one dubiety that sticks with the whole process, that could have something
to do with how it seems to plant all new ideas. This insecurity is about how detailed the design
mockups should be. The common idea is that the design should consist of rough sketches, just
enough to project a clear image of what to come [3]. This is because the client should not focus on
design details, such as colors and images. This is a good thought, but for this process it seamed to
backfire. The image that this paper prototype process signals is that this is work in progress. By
showing sketches of a future interface the client thinks the door for new input is wide open.

14

New input and ideas should never be considered a problem, but with a tight deadline and a
problem domain that is in desperate need of constraints, there are few other ways of looking at it.
The solution would be to have a simplified paper prototyping earlier in the requirements elicitation.
One where the client can participate in the formation of the interface. This idea alone would be
contradicting to the ideas of letting the expertise design the application and it is interface, but it can
be used as a complement to extract more thoughts and ideas from the users.

3.6 Speeding up requirements

Gathering and understanding requirements are important. There is no doubt about that. But the
complexity of the graphs, the large target audience and the ambition to produce a result in twenty
weeks calls for faster methods. The target audience is more open in a sense that it doesn’t consist of
a closed workplace and the fact that the renewal of students is quite large.

Also, in a more distant future, a working web application may be a part of the Student Portal and
used by hundreds of students. There is a risk that requirements gathered from interviews and paper
prototyping only manages to pick up a limited amount of feedback on how the optimal application
should work. When working with a larger target audience the idea of working with, and updating, a
live version may be better. One can use the approach of rolling out di↵erent versions of the system,
and then analyzing user behaviors on a larger scale. This way of testing is refereed to as A/B-testing
and can be useful when determine the how the interface and application workflow should be.

With these facts, there is reason to evaluate how much of the project that should focus on
requirements.

15

4 Methods

The methods used are basically focused on producing a visible result. Instead of User Centered
Design (UCD), a more result-oriented approach is used. The ambition for the application is for it to
serve as a foundation of further development. With that in mind, lot of work is spent on building it
according to a well-used software architecture.

4.1 Result-oriented design

As described in previous section, the ambition is to produce visible result from a complex problem,
during the limited time scope of this master thesis. The large target audience makes requirements
hard to gather and grasp, and feedback can also be given during the production phase if the tool is
a web based application. With these problems in mind, this project will use the concept of using
an inspiration-based design instead of, the more commonly used, User Centered Design (UCD). The
idea behind this is to try out a newer and supposedly more e�cient method when designing graphs
and the supporting application. UCD involves numerous iterations of analyzing and testing. The
drawback of this method is that its time consuming, and not suitable for this master thesis. Trying
out the UCD method, and use it the right way, could by itself engage a master thesis. Instead, the
idea is to use this result-oriented method. Sometimes described as Genius Design, is somewhat of an
opposite approach, relying on expertise of the team, without external user input. ITs significantly
faster than UCD, but requires more expertise and experience.

The clearest benefit of using this approach is that allows fast production of graphs in a limited
time scope. The graphs will be mockups created in large quantities, rather than of great quality.
They will be iteratively improved. Some methods will however involve the user, primary during
requirements gathering. Interviews and paper prototyping.

An application will be built, as a proof of concept. This application is web based and created
according to the Model View Controller (MVC) pattern. The motivation behind using MVC is a
mixture of personal development and actually build according to a structure that can serve as a API
to further developments. The application will feature some planning possibilities with drag-and-drop
functionality where the user can move courses between periods to create a study syllabus. The study
syllabuses will be summarized in some graphs and visualizations displaying things like orientation,
how courses are related and what types of courses that are significant for each period.

In a way, these tools also describes the three cornerstones of this project and sums it up towards
the goal; building a web based application for planning and visualize courses, and doing it the right
way.

4.2 Why web based application?

Building a web application seems like a good idea, essentially because of two things. The first being
that web applications are a easy to distribute. In the context of this master thesis the application will
be used by faculty sta↵ when planning, debugging, and presenting the program. But a further goal
would be to link this to the students in a way that they could create their own study syllabus. The
other study related tools used by students are online (ping-pong, studentportalen), so introducing
this one could be done simply by integrating it in a website.

Web based applications has increased enormously the last couple of years. Thanks to new stan-
dards, such as HTML5, CSS3, jQuery, among others, the limitations of what can be done with web
applications has been significantly reduced.

Some of the downsides of this approach is outside the context of this thesis. They will only be
reviewed briefly.

4.2.1 Security and personal integration

The security aspects of building a web based application is not considered in this project, but should
be acknowledged in the future. There are lots of things to consider, such as SQL injections and other
user input. Critical user information and passwords should be encrypted and database information
should be secured [11].

4.2.2 Speed and performance

In terms of speed and performance, the rules that applies to web sites naturally applies to web
applications. Since this also is outside the project domain, very little e↵ort is given to improve
performance. However some basic CSS rules is applied, such as using sprite images and reduced
quality. No e↵ort is putted in minimizing database requests which could probably slow down the
system substantially.

16

4.3 Using a software architecture

Building a complete system of this magnitude in a time span of approximately twenty weeks is not
a realistic goal. In this case, a major part of this project focused on pre studies,user requirements
and user interaction. Therefore it seemed essential to use some kind of architecture to build the
application on. A higher order structure would make it easier for others to adapt and continue
working on this project.

A software architecture is basically what the name suggests, an architecture for the software.
In general, it defines the structure of a system, its elements,their relations and their properties.
The motivation behind using a certain structure or pattern are often based on design decision. For
example, one would like to separate domain specific information from the presentation. This is
actually the main motivation behind the software architecture that was picked for this project, Model-
view-controller (MVC). But before diving into that specific architecture, we will look into the basics,
the cons, and some di↵erent design patterns that adapts and concretizes the use software architecture.

The basic idea behind software architecture is structure and separation. Using a good structure
provides better overview of a complex system, while separation allows for multiple elements to be
worked on simultaneously. In larger project di↵erent teams often work on di↵erent parts. There may
be user interface experts working on the front-end while data security experts has focus on back end.
A good structure would allow teams to work on each end of a project while maintaing a common
goal. Even if this particular project does not involve such magnitude, it shouldt throw a spanner
into the works for future developers. Growth must be supported. Except from a smoother transition
to other developers and modularity, using a software architecture has a additional advantages [An
Introduction to Software Architecture].

High level relationships Its important to have a clear picture of the application structure in order
to understand it is functionality, without drowning in details. This helps us in building new systems
as variations on the current.

Establish the architecture before writing code Before digging in to writing code, the structure,
functionality and relation between system components should be settled. By doing this it is possible
to, at least in some sense, streamline the code and optimize the system. It can be used as a debugging
tool on higher level, as illogic in the system is exposed. If the architecture is not established, there is
a predominant risk of slow systems that is built on scattered structure and overlapping functionality.

Exposing alternatives Detailed understanding of the architecture also allows for system developers
to consider alternatives before implementation has begun.

By establishing an architecture we present a template that tells us how to add new parts to a
system. This creates the flexibility which basically is the motivator to use it in this project.

4.3.1 The Model-View-Controller Pattern

The The Model-View-Controller pattern is a software architecture, or a methodology, that presents a
way of separating domain, presentation and user input elements. The first known description of the
pattern was made in 1979, by the Norwegian computer scientist Trygve Reenskaug who wanted to
present multiple views of of the same data. The pattern is based on three components Model, View
and Controller, whose relation is presented in figure X. Over thirty years later, the MVC pattern is
probably the widest used software architecture for web applications. Later, a web specific version
emerged, which is described further in the next section.

The Model basically contains the building blocks that are used, such as data and functionality.
For most web applications this means that this is where databases are included. The Model may
use observer pattern to notify the other components data changes and the observer pattern is what
actually what separates the View form the Model. The View and Controller maintains direct links
to the Model and are all associated as singular entities. What this means is that each Model is
associated to a single View and vice versa.

The View is where the material, or application content, is presented. In most web applications this
would be where each HTML page is defined. The functions that are used to make the application
interactive (a web application that only consists of static material isnt really an application) are
defined in the Controller, which lets the other two components communicate with each other.

4.3.2 Web specific MVC patterns

Using MVC patterns in web applications is somewhat of a natural step since they allow sending
dynamic content to clients by processing HTTP requests from the server side. As applications on the
web became more advanced the need for a good software architecture increased. In order to process
data and requests, a web specific MVC structure emerged.

When looking at the structure in figure X2, the most notably di↵erence in web specific MVC
is the Front Controller. The figure can be somewhat misleading in making believe that the Front

17

Controller is visible to the users. What this component does is handling incoming requests sent by
the user. The Front Controller routes the incoming requests and then dispatch any actions. What
this means is that it bulks all responses to a request and returns them when the process is completed.

The other parts are similar to the general MVC structure. To make a very simplified example of
the web specific Model-View-Controller architecture in the domain of a web application, the Model
can represent a database, the Controller holds all functions that may use that data and the View
present the web interface to the users.

4.3.3 Other software architectures

In web application development, the web specific MVC seems to be, by far the most popular. But
in order to get an overview of the alternatives, some other architectures is fairly examined. Most
structures that is examined are basically variations on the MVC theme, and could probably be used.
But having the large amount of documentation and help from di↵erent blogs and web forums, it
seems like they would have a hard time in challenging the good old Model-View-Controller.

4.3.4 MVP

One architecture that, by the name sounds quite the same as MVC, is Model-View-Presenter (MVP).
The basic di↵erence is the Presenter which performs similar tasks as Controller in MVC. Also, the
View deals with the UI events, which is typical Controller tasks, leaving the Model to strictly handle
the domain (for example database connection).

4.3.5 MVVM

The other architecture, MVVM consists of the parts DataModel, ViewMode and View. This archi-
tecture is targeted towards rich UI applications, such as Microsoft Silverlight which is an application
framework to run advanced internet applications.

Both architectures could probably be adapted to this project, but it seamed natural to follow the
basic MVC structure.

4.3.6 Zend specific MVC structure

Before digging in on the whole Zend application framework, some things should be considered. The
Zend framework features functions and concepts to help the architecture as well. This is the basic
idea of having an application framework. The way for an outsider to continue work on this project
is to follow the Zend specific MVC structure that is set by the application framework. This is one
of the major advantages of Zend, that the architecture is so solid. By following the structure set by
Zend, one would follow build applications according to the MVC structure.

4.3.7 Zend Framework

For the same reason as using a software architecture, an application framework is also a good idea
when building this system. In short, the Zend framework is based on the MVC structure, so this is
basically the next step in the process of deciding what tools to use. Skeptics to application framework
often asks why they should bother setting up an environment and use predefined function in order to
build PHP applications. There are two main reasons in this project for doing that. First, as nagged
about in the software architecture section, it provides a good structure that is much easier to adapt
for those who are introduced to the system. Zend o↵ers tools for setting up the backend environment
such as database connections and building functions from there. When new functionality are added
to the system, its not hard for the developer to figure out how similar functions were made, and go
from there.

Second, once the environment and backend are in place its quite easy to create new functionality
to the front end. Part of this project is to explore di↵erent ways to visualize course data, and this
is is often done from the same database tables. Once they are set, visualization could be done quite
easy by passing JSON objects to jQuery functions in the front end.

4.3.8 Zend alternatives

Before digging deeper into Zend, we will examine the alternatives and explain why Zend was the
winner. Most application frameworks are actually quite similar [2]. There may be di↵erence in how
certain semantics or design issues are solved but to most users it seams like a matter of personal
choice and taste. Popular alternatives such as CodeIgniter [] lacks built in support for Ajax, while
others only provides support for a single database, which didnt cut it if the Selma database is to

18

be included later on. All of the popular ones (CodeIgniter, CakePHP, Yii) are base on the MVC
structure.

Zend comes with quite a rich community and some well known sponsors, such as Google [7] and
IBM [8]. Since Selma is a IBM DB2 database that connection became the key part in settling for
Zend. The Zend framework has embedded support for DB2 databases which could be useful in future
versions of this system, where Selma is integrated.

Zend framework features some shell script commands called Zend Tool. These can be used to
build create new Models, Views and Controllers, among other things. Zend Tool can be used to
create a new project. When doing that Zend Tool creates a directory structure, controllers, actions,
views, and some project details.

4.4 Creating an API

As described, the benefits of using the MVC structure when building this application is that the
database is separated from the rest. This serves as a simple Application Interface (API) where
functions are created to deal with the required data. The benefit of using an API is that it requires
very limited knowledge of the surrounding operations. Generally, all that is needed is the right
variables in order to extract the right data. When using a fully functional API, developers can focus
on other things like dumping data into di↵erent graphs and visualizations.

19

5 Result

This section describes the result of this master thesis. The most interesting part is the di↵erent
graphs created, which is summarized in the last part of this section. The application is used as a
foundation for planning, where courses can be created, teachers and requirements added, and more.

5.1 Workshops and User Interaction

Workshops and seminars are mostly used, directed to the client while gathering requirements. At the
end of the project, some simple types of seminars and open discussions are used among a small group
of students to evaluate the compiled graphs.

It should be noted that limited e↵ort was put in workshops, in favor of other priorities. One major
reason for including this part is mostly for personal development.

Building a lucid graphical user interface is also part this project. Even though the application is
proof of concept, building it the right way is still high priority. There are a great number of books,
essays on what good GUI design is. And not the least, endless examples of both good and bad GUI
on the internet. The interface for this applications is aimed at following some basic principles, as well
as avoiding some common design mistakes [5].

A good GUI design should be built around the specified tasks of the user. The designer is, and
should be, the expert, but there is a thin line from taking the overhand and steering the user in their
direction. For example, some GUI designers wants to control the users navigation by graying out
areas or disabling buttons. An application of this kind should be event-driven, meaning that the user
is in charge of the events. Allowing too much user freedom may expose bugs and design faults, which
can seem a bit scary to some designers [5].

This shows the complications in GUI designs, because another common design mistake could
occur if the event-driven design concept is misinterpreted. The user should be given freedom, but
not all at once. It may be tempting to include all functionality in one single view, which may cause
the functions to be in the way of the applications functionality.

Other GUI design basics that is considered for this application are interface structure and the
use of colors. How this was solved is described in section 5.2, which covers the structure of the
Application, and the ideas behind them.

5.2 Application

This section describes the application that is built to support and visualize some of the ideas of this
project. As mentioned earlier the original idea is to build a complete application within the time
frame of the thesis. That idea is scrapped at an early stage. However, a simple application is built
with the desire to build it in a decorous way. The ambition is to build it on well-used techniques,
mostly for personal development.

The back-end structure used for this application is described earlier so this section focuses on
front-end, such as elements and workflow, along with concepts and ideas.

The previous work that resulted in this thesis provided (among other things) a solid database
that described most of the relations needed to build that application. It provided tables and relations
for teachers, courses, institutions, programs and many more. This is all taken into consideration for
this work since, even if it would turn out into a proof of concept, it should still be modular and
something to work further on in the future. Therefore, some of the surrounding information that
could be stored in the database is implemented and can be managed through the application, such
as managing teacher information, institutions and programs. Some would probably argue that this
information is in the periphery of the actual subject. But all information that could be visualized
or compiled should be taken into consideration. Imagine the future possibility of a graph tool that
could easily describe what available teachers there are for the following year, or charts that can tell
which program has the highest rated courses?

This section will describe some of the key elements in the application, forms and draggable boxes,
as well as workflow and feedback.

5.2.1 Forms

This application will deal with quite large amounts of data, from detailed course info to surrounding
data about teachers and tags. Even though a feature vision for this is a seamless synchronization with
existing databases, the current version will rely on using forms to provide the correct information. A
typical form in the application can be viewed in figure 5.2.1.

Using form has always been a keystone in modern interfaces and todays users are quite confident
using them. Being confident using a form is not only regarding security aspects, but also usability
aspects. Nowadays, most people are familiar with basic text boxes, drop-down menus and checkboxes.

20

Figure 3: A form in the application where course instances are handled. For each course

there is the possibility to add tags, prerequisite and teachers.

A natural conclusion of this would be that designing forms nowadays are a lot easier than before.
But one particular side e↵ect of being more comfortable with is that users are more demanding than
before. They expect smooth flows and are less willing to tolerate bad forms. Creating a good form
has moved from being about providing comfortability and gain the users trust, to be more directed
towards smoothness and quick feedback.

One interesting theory about using forms (or rather why using them are so rejected) are elaborated
in the book “Forms that work” [6]. Here, they are looked at from a plain usability perspective. The
forms were dissected and pieces such as fields, text areas and overall structure were examined in
order to understand the di�culty with using form. The theory that emerged divided forms into
three layers: relationship, conversation and appearance. The basic idea is to pinpoint what the
form communicates. Within this project it is discovered that the idea of using these layers could be
applied, but has grown rather old. The key di↵erence between the theory and the discoveries within
this project is, as described above, what people expects from forms. The security issues has stepped
aside, on behalf of feedback and smooth transitions. But before twisting their theory, lets examine
it.

5.2.2 Relationship and reaction

The first layer is describes the relationship between the form taker and the organization asking the
question. A lot of this parts focus on how to establish trust between these parts. This is, without
a doubt, both an interesting and valid approach. But this layer assumes one thing, that forms are
external, which is a very narrow way of looking at form. For example, adding an event in a basic
calendar application (i.e. iCal) or sending an email requires filling out numerous text fields. That
should be seen as a form. And the relationship is a non-issue after several times using it.

A more interesting approach to this layer would be to look at it from a reaction perspective. What
happens when a form is filled? What kind of response is given? In the given theory, the relationship
layer also includes a reward perspective. What reward is given when filling out a form. What is
rather sad about this point of view is that it has the base idea that we think of filling out form as
something we would rather get rid of. It may be a bit too ambitious trying to design a form that
people are dying to fill out. But a good goal in designing forms should be this: do not let them realize
that they are filling out a form.

5.2.3 Conversation

The second layer, conversation, is also quite complex for this project. But the keystones should defi-
nitely be included. They deal with what di↵erent elements, and their positioning, are communicating.

21

One interesting approach is to try to avoid unexpected elements, for example by using multiple steps.
A good form quite easy to overview.

5.2.4 Appearance

The appearance layer deals with what the forms look like. It is not quite the same as conversation
(even though simpler forms may allow these layer to overlap). Research has been made with eye
tracking technology proposing that labels should be placed on top or on the left of fields. Placing
the label at the left of the field requires less eye movement, which is good. But it is not the only
consideration. For example, drop-down menus could work better with labels on top of the elements,
depending on their width.

Other appearance considerations does not vary much from regular GUI rules, such as coloring
and structure.

5.2.5 Other considerations

The overall di↵erence, from the more complex theories about user input [6], is that this application
mainly uses is smaller, but recurring, forms. Some ideas that is brought up considers how to get users
to understand and fill out more complex forms. The interesting question in this case is rather how
the structure should be suited for returning users.

There is one form that could not be left out in this project. It is both extremely simple, and
extremely reused: the Google website. Since Google has billions and billions of users every day, it is
quite easy for them to create big case studies, simply by tweaking the design for a limited time [15].
But what they are aiming for really interesting elements, making it quite fun to fill out the Google
form.

• Quick response: The new instant search...

• Suggestions:

• Smooth navigation: Tab navigation

These are three keystones that could give forms a more interactive experience.

5.2.6 Drag-and-drop

The section where study syllabuses are planned is without doubt the key of this application. The
concept is to let the user construct study syllabuses by dragging and sorting blocks of courses. These
courses can be picked from a drawer in the edge of the screen. The concept of drag-and-drop is
to let the user recognize the concept of moving a physical object from one place to another. The
interessting part of this is how widely used this is, considering that there are easier and more e↵ortless
ways of moving objects. Dragging requires more physical e↵ort than moving the same pointing device
without holding down any buttons. Because of this, a user cannot move as quickly and precisely while
dragging. A screenshot of the application can be viewed in figure 5.2.6.

5.3 Analyzing and rebuilding graphs

With all the information that is to be visualized it is clear that a multiple set of graphs should be
used. Simpler structure of the graphs supports the process of forming mental models of information.
Also, multiple graphs within the same area is a way of analyzing and testing them on students. The
whole process of creating graphs are quite open-ended in that sense that there are not a finite set
of graphs to create. Many of the graphs created ultimately displays additional information than
originally planned. They may, for example, show information on how courses are related and how
they are planned in relation to each other.

5.3.1 Course graph

The program graph, used to visualize the entire program, should be based on the information from
the old graph, but with enhancements. The basic problem with the old course graph is that it tries
to bring too much information which made things messy. From the information given in the original
graph, new ones are created.

One major inconsistency with the current graph is how time is represented. The basic structure
is built upon classes, creating a five level tree graph. This suggests that the time line is represented
by the y-axis. But for each level, each period is represented by a time line along the x-axis. This may
be a logic way of describing both year classes and periods, but brings forth the following problems.

22

Figure 4: The planning view of the application

Introduktion till IT

Studieteknik

Beräkningsvetenskap DV

Diskret matematik
Företagsekonomi baskurs

IT i samhället

Kognitiv psykologi

Villkorsprogrammering

Datavetenskapens didaktik

Projekt IT

Databasteknik I
Medicinsk informatik

Inbyggda styrsystem med projekt

Programvaruteknik

Datakommunikation II

Databasteknik II

Algoritmer och datastruktur II
Examensarbete

Datorarkitektur och digital elektronik
Självständigt arbete

Uppsatsmetodik
Uppsatsmetodik

Flervariabelanalys

Programvaruarkitektur med Java

Processorienterad programmering

Digital design med VHDL

Programmering av inbyggda system

Modellbaserad utveckling av inbyggda program

Optimeringsmetoder

Objektorienterad design

Datorgra!k

Distribuerade system med projekt

Sannolikhet och statistik

Grafteori

Modellering av dynamiska system

Säkra datorsystem I

Datoriserad bildanalys 1

Trådlös kommunikation inbygda system

Programmering av paralleldatorer

Högprestandaberäkningar

Avancerade visuella gränssnitt

Gränssnittsprogrammering I

Gränssnittsprogrammering II

Användbarhet i praktiken

IT, etik och organisation

Människor i komplexa system

Avancerad interaktionsdesign

Användarcentrerad systemdesign

Informationsutvninning II

Kompilator projekt

Säkra datorsystem II

Datakommunikation III

Projekt i tillämpad beräkningsvetenskap

Komplex analys

Transformmetoder

Linjär algebra II

Storskalig programmering

Flervariabelanalys

Beräkningsvetenskap III

Beräkningsvetenskap II

Vetenskaplig visualisering

Signalbehandling

Reglerteknik II

Realtidssystem

Avanc. datorarkitektur

Datakommunikation I

Envariabelanalys

Datorarkitektur och digital elektronik

Baskurs i matematik

Algebra I

Automatateori

Signaler och inbyggda system Kompilatorteknik I

Imperativ objektorienterad programmering

Informationsutvninning I

Linjär algebra och geometri

Introduktion till datorbaserade reglersystem

Programkonstruktion och datastrukturer

Kryptologi

Figure 5: The first visualization that uses the idea of emulating a subway map. This graph

places all courses in four time zones, representing the four study periods. The courses in

center represents mandatory courses. The ambition is to create a graph that grows from

oligo into di↵erent branches for each program profile.

23

Envariabelanalys

Datorarkitektur
och digital
elektronik

Algebra I

Automatateori

Imperativ objektorienterad
programmering

Programkonstruktion
och datastrukturer

Linjär algebra
och geometri

A

D

B

E

Introduktion till IT

Studieteknik

Baskurs i matematik

G
Datakommunikation 1

Signaler
och system

C Informationsutvinning 1

I Flervariabelanalys

J Storskalig programmering

L

M Avancerad datorarkitektur

N Realtidssystem

O

Digital design
m VHDL

R

Transformmetoder S 4

Signalbehandling

Sannolikhet
och statistik

V

1

V Grafteori

X

Distrib. system
med projekt

Vetenskaplig visualisering

Y

Vetenskaplig
visualisering

Beräknings-
vetenskap 2

Figure 6: The second subway graph cuts away all connecting lines that extends over two

study periods. It provides a clearer graph, but with a lack of continuousness. A larger version

is shown in appendix B.

• No courses are actually connected to a certain year, but more importantly connected by their
classifications and requirements. What this means is that there is no rule saying that a certain
course should be taken in a certain year. This is rather a recommendation presented in the
graph. For students that has the prior knowledge for every course, the year based time line is
useless. The same also appeals to students that have slipped behind in their studies.

• Using multiple time axises makes a quick overview harder. For students right in the middle of
their studies, its very hard to orientate themselves in such a graph.

With this in mind, the new graphs that are created uses a circular time axis that extended over
four time periods, just like a clock, or the four seasons. The fact that no courses are connected to
certain years makes it easier to place them around a circular time axis. The idea of using the clock
metaphor as a replacement for the timeline leads to the next question, whether classes should be used
at all.

The graph in figure 5.3.1 is a sliced quarter of the first course graph. This uses the clock metaphor
where each course are placed in a circle, in their respective period. This graph is cleaner than the
original course graph, by many means.

• It is easier to use a circular course graph when presenting the program, since the graph is
scalable. It is possible to just present the current period, and still make it lucid and good
looking.

• Since it focuses on periods rather than class it has potential to catch the students with unfinished
courses. By showing all courses, students are reminded of these unfinished courses when planning
next period.

• It is easier to plan since the graph has constant focus on the next period.

When looking at the program based on the tree graph, one thing are clear. Classes can be
removed. Removing the concept of year from a five year science program may seam impossible, but
is actually a good idea. As described above, no course are dependent on a certain year, but rather
on classifications and requirements. There is no saying on how one should plan their studies as long
as, for each taken course, the student fulfills the requirements for that course. The year is basically
a way of grouping courses and make sure no incorrect requirements prevents students from further
studies. In a way, its a secure way of making sure students have access to courses and are committed
to full time studies.

24

A better way would to only focus on periods. This would make it much easier for students in the
middle of their studies to orient themselves. To be able to view all courses for a certain time period
could serve as a reminder for students to complete unfinished work. A theory evolved that the use of
user recognition could be used to ease the interpretation of the graph.

Ve
te

ns
ka

p
lig

 v
is
ua

lis
er

in
g

B
erä

kn
in

g
sv

ete
nsk

ap
 2

F
le
rv

a
ri
a
b
e
la
n
a
ly
s

M
ä
n
n
is

k
a
-d

a
to

ri
n
te

ra
k
ti
o
n

Tr
a
n
s
fo

rm
m

e
to

d
e
r

In
tr

o
d

u
k
ti
o
n
 t
il
l
In

fo
rm

a
ti
o
n
s
te

k
n
o
lo

g
i

B
a
sk

u
rs

 i
m

a
te

m
a
tik

Im
p

e
ra

ti
v
 o

b
je

k
to

ri
e
n
te

ra
d

 p
ro

g
ra

m
m

e
ri
n
g

Auto
m

ata
te

ori

D
a
ta

k
o
m

m
u
n
ik

a
ti
o
n
 1

IT
 i
 s

a
m

h
ä
ll
e
t

O
b
je

k
to

ri
e
n
te

ra
d
 d

e
s
ig

n

S
to

rs
k
a
lig

 p
ro

g
ra

m
m

e
ri
n
g

A
v
a
n
c
e
ra

d
 d

a
to

ra
rk

it
e
k
tu

r

Kognitiv
 p

sykolo
gi

Realtid
ssystem

Informationsutvinving 1

Villkorsprogrammering

Signalbehandlin
g

Datavetenskapens didaktik

Projekt IT

B
erä

kn
in

gsv
ete

nsk
ap 3

S
t.
te

k
.

Reglerte
knik 2

Figure 7: A quarter slice of the circular course graph is used to represent one period of

15 study points, where each ring represent 5 points. Courses that extends over the radius is

continued into the next period. The full graph is shown in appendix C.

Another thing that is removed is study pace. The study pace is a percentile number indicating
the required engagement from the student. For each period a student should study at least a total
of one hundred percent. But this number doesnt fill its purpose. Lets say that two courses are given
in a period, where one has a study pace of 33 percent and the other pace is 66 percent. This would
suggest that students deposit the double amount of time and work for the second one. But in reality,
the needed commitment for a course depends on the di�culty of the course and the capability and
talent of the student. The actual pace is individual for each student. With this in mind it is decided
that pace isnt useful information and shouldnt certainly steal any focus. With this in mind, it would
be more useful to visualize the classifications since this probably would correlate better with how
committed the students would have to be.

Int the current graph, dependency arrows is supposed to serve as a support for students in making
their course choices. But the large amount of courses just makes up a big pile of directed arrows.
Most of the arrows are crossing and mashed up, making it di�cult to follow them from one course
to another. It could be told right away that using some kind of dynamic graph that only shows
dependencies for current courses would be a better alternative. An alternative without arrows is also
created. The idea behind this is to group them di↵erently and try to use the time line as requirements
indicator. In the current graph, one arrow displays the requirements from one course to another. But
the requirement itself prevents students from reading the two courses in the opposite order, so perhaps
the use of a timeline could provide enough information on what order to study connected courses.

Using dependency graphs is a quite popular way of visualization, but with that much informa-
tion the connectors doesnt provide any good information. All they tend to form is good looking
information. But looking good isnt equivalent to being good.

The circular course graph in figure 5.3.1 may use dependency arrows to display how courses are
connected. The problem is when displaying all arrows at once. These types of dependency graphs
seems quite popular, but their functionality may be discussed. Displaying all dependency graphs in a

25

small circle is not really usable. It could be used as an interactive variant where dependency arrows
are displayed on hovering.

From the decision to remove years and pace left the old graph with only one time related variable,
periods. The periods are returning for each year, much like seasons of the year. With this in mind
comes the idea of building the new graph as a clock, where each quarter represented a period. All
courses would be grouped according to that model. Using the model of a clock made students
recognize the structure and could easy navigate around the time axis.

From this structure, the students can get a better overview of each term, which is the basis of
what courses to pick. Prior to each term, student are obligated to pick the courses the want to take
for that time period. Using a clock, or wheel, based structure one could just display the current
term by displaying half of the circle. This would be a much more comprehensive image for students
to grasp, especially in the domain of a keynote presentation where lack of screen space (or more
correctly, screen resolution) demands smaller visualizations.

A new type of graph is also built, with recognition in mind, that is based on the circular course
graph in figure 5.3.1. The new graphs uses a classic subway map as a metaphor. The map is based
on the circular graph in the sense that periods are aligned clockwise in four square areas. What we
want to do is to find a way to connect the courses, in another way than the dependency arrows from
the original graph. The idea is to connect them like stations in a subway map. The advantage with
the subway metaphor is the clean and structured map it produces. The lines between courses are
easy to follow and the di↵erent education profiles can be color coded, just like the subway lines. The
graph is still based on time periods, forcing the placement of the courses in their corresponding area
in the graph. Unfortunately, this produces a bit to long distance between some of the courses, and
creates a spiral like pattern, as seen in figure 5.3.1, when trying to maintain the chronological pattern
of previous graphs.

The graph in figure 5.3.1 shows the further development of this graph. This graph features a
design rule, as an e↵ort to remove the longest lines. Each connection line that reach over two periods
is replaced by a link by the shape of an arrow, containing a key letter. This letter could be found in
a corresponding arrow, continuing the line towards the course destination. The problem here is that
many lines su↵ers from this long reaching dilemma, causing the graph to be filled with arrows and
letters instead. One conclusion of the program could however be drawn from this. Most courses that
grants access to other courses are not using this knowledge directly, but rather a couple of periods
later. Let’s say for example that one course provides skills that grants knowledge to another course.
What this should mean is that these skills are to be used in the second course. But in this program,
most of these second courses are not planned directly after the initial courses, but rather a couple
of periods later. This may be an interesting fact, both for visualization of progression, and when
discussing how to motivate students.

5.4 Course graph meta information

The graphs are created to show meta information about the program and is mostly directed towards
the program directors and administrators. They tells us information that probably is not that inter-
esting to students. By summarizing and grouping course information, such as orientation and points,
some interesting patterns emerges.

The first graph, in figure 5.3.1, shows how courses are distributed among the four periods. Color
density are used to visualize the amounts of courses within each time slot. The motivation behind
this graph is to support the administrators in their planning of new courses. When planning it is
desired to. When planning the courses of each year, you want such a proliferation of courses so that
courses of the same score ends up in various points, as much as possible. It would therefore not have
any 15 credit courses in the same period. This graph facilitates this distribution.

The other graph, in figure 5.4, is used to visualize the distribution of orientations within the
university program. This could be interesting if compared to other master engineering programs at
the faculty, or by comparing master engineering programs of the same type on di↵erent universities.
This could serve as help in orienting the program among the others.

This graph does not really reveal any new or surprising information. The largest circle represent
courses of computer orientation, followed by sets of di↵erent orientation, such as computer science,
human computer interaction, embedded systems. The only eye opener is that there is not really that
much math courses in comparison with how the master science courses are generally described. This
graph, or variations of it, could be used to present the university program to external parts, such as
future students.

5.4.1 Study syllabus feedback

The feedback graphs for each student should serve as support and guidance in their study. What
this basically shows is the orientation of the finished courses, summed up by their study points. This

26

1

2

4

3

5 HP

Figure 8: The density graph is used to display the density of di↵erent (in terms of study

points) course for each period. This is directed to those planning and inserting new courses.

Företagsekonomi

Självständigt arbete

Människa-
datainteraktion

Högpresterande
datorsystem

Inbyggda system

Datavetenskap

Matematik

Datorsystem

Figure 9: This graph sums up the di↵erent orientations within the program, by study

points. This could be used to compare di↵erent programs with each other.

27

gives each student a sense of their own profile. One would know what type of course to study in order
to become increase their knowledge with a certain area.

Figure 10: Two feedback graphs from a personal study syllabus. The first one visualizing

at which period a certain goal is reached. The graph underneath visualizes the density of

each orientation for every time period in the education.

5.4.2 Study syllabus goals and progress

This graph is mainly used to make sure all requirements for graduation is fulfilled. As mentioned,
in order to graduate the students must complete enough points of courses labeled as technical and
advanced, as well as mandatory ones. The above graph in figure 5.4.1 is basically a set of plots, one
for each goal, and a horizontal line displaying at how many points each goal is reached. From this, it
is easy to locate in what periods the plots corresponds with its respective goal.

The graph below in figure 5.4.1 represents the density of each profile for each period. This is used
to visualize how the di↵erent types of courses are distributed along the entire education. The goal
would be to have a even mix of di↵erent courses throughout the education to maintain motivation
among students.

The graph in figure 5.4.1 is all courses from the program grouped in bubbles, much like the ones
in figure 5.4. The idea behind this graph is an interactive one where completed courses are bolded.
This is a way of promoting the profiles within the program and support the students who wish to
take all courses within a certain area. The circle area represents the total amount of points within
this area, and the smaller circle on the inside represents the completed amount for the student. The
outlined circle within some of the circle represents the required level (if such exists) for each area.

5.4.3 Summary

The graphs is then summarized with regards to some key factors. This summary is intended to give
a quick overview of what each of the graphs shows, in terms of traceability, simplicity and more
concrete factors like points, periods and course meta information.

28

Realtid
ssy

ste
m

Signalbehandling
Reglerteknik II

Introduktion till datorbaserade reglersystem

Digital design med VHDL

Inbyggda styrsystem med projekt

Program
m

ering av inbyggda system

M
odellbaserad utveckling av inbyggda program

Trådlös kom
m

unikation inbygda system

M
odellering av dynam

iska system

Baskurs i m
atem

atik

Transformmetoder

Flervariabelanalys
Algebra

Envariabelanalys

Grafteori Baskurs i matematik

Linjär algebra II

Linjär algebra och geom
etri

D
iskret m

atem
atik

Flervariabelanalys
Kom

plex analys
Sannolikhet och statistik

Kognitiv psykologi

M
edicinsk inform

atik

Avancerade visuella gränssnitt

Användbarhet i praktiken

Gränssnittsprogrammering I

Avancerad interaktionsdesignAnvändarcentrerad systemdesign

Gränssnittsprogrammering II

IT, etik och organisation

Människ
or i

komplexa sy
ste

m

In
fo

rm
at

io
ns

ut
vn

in
ni

ng
 I

Vi
llk

or
sp

ro
gr

am
m

er
in

g
D

at
av

et
en

sk
ap

en
s

di
da

kt
ik

Ko
m

pi
la

to
rt

ek
ni

k
I

Da
ta

ba
st

ek
ni

k
II

Ko
m

pil
ato

r p
ro

jek
t

Algoritm
er o

ch datastr
uktur II

Informationsutvninning II

Medicinsk informatik
Avancerade visuella gränssnitt

Användbarhet i praktiken

Gränssnittsprogrammering I

Avancerad interaktionsdesign

Användarcentrerad system
design

Gränssnittsprogram
m

ering II
IT, etik och organisation

M
änniskor i kom

plexa system

Introduktion till IT

Imperativ objektorienterad programmering

Datakommunikation I

Människa-datorinteraktion

IT i samhället

Objektorienterad design

Storsk
alig programmerin

g

Ava
nce

rad datorarki
tektu

r

Data
bast

eknik
 I

Pr
og

ra
m

ko
ns

tru
kt

ion
 o

ch
 d

at
as

tru
kt

ur
er

Di
st

rib
ue

ra
de

 sy
st

em
 m

ed
 p

ro
je

kt

Pr
oc

es
so

rie
nt

er
ad

 p
ro

gr
am

m
er

in
g

Pr
og

ra
m

va
ru

te
kn

ik
Sä

kr
a

da
to

rs
ys

te
m

 I
D

at
ak

om
m

un
ik

at
io

n
II

D
at

or
ar

ki
te

kt
ur

 o
ch

 d
ig

ita
l e

le
kt

ro
ni

k

Pr
og

ra
m

va
ru

ar
ki

te
kt

ur
 m

ed
 Ja

va

'
DW
RU
JU
Dȴ
N

Kr
yp

to
lo

gi

Sä
kr

a
da

to
rs

ys
te

m
 II

Da
ta

ko
m

m
un

ika
tio

n
III

Företagsekonom
i

Autom
atateori

Projekt IT
Studieteknik

Uppsatsmetodik

Självständigt atbete

Figure 11: This graph has grouped all courses by their respective orientation. The purpose

is to show the completed points within each area in an interactive way. Bolded courses are

available to the student. The circle area represents the total points within this profile, and the

smaller represents finished courses for the student. The outlined ring represents the amount

of points that are mandatory for this orientation. A larger version is shown in appendix D.

29

Graph Summary
Original graph Has a clear structure and traceability. It is

easy to see when the courses are held, how
they are connected and what their orientation
is.

The circular graph
(fig. 5.3.1).

It is easier to orientate and get an overview
of the available courses. The drawback of this
graph is that it does not show how courses are
connected. This graph is much cleaner than
the original, since no arrows are drawn over
the boxes that represents courses. It uses a
more natural way of grouping courses in peri-
ods and erase the problem with multiple time
lines, that the original has.

The density graph
(fig. 5.3.1)

Good summary of the program, terms of ori-
entation and points. Cheap on information.
Could be useful when comparing programs.
This is a complementary graph, but it provides
information that is not visible in the original
graph. There is no way of grasping what pe-
riod contains the most courses or points from
that graph.

Subway graphs Simple structure and easy to follow. Gets
messy for larger programs. Still, this deals
with the overuse of arrow in the original graph.
In the original, all crossing arrows makes it
quite hard to go from one course to the next.
This is handled with this graph.

Bubbles graph (fig.
5.4.1)

Clear overview of courses. Logic grouping and
clean feedback. Lacks connectivity and rela-
tions between courses. It provides a better
overview. It can be used during the whole ed-
ucation, which was a problem with the origi-
nal. It’s impossible to get a quick overview of
completed courses from that graph.

Feedback graphs (fig.
5.4.1)

Clear overview for each student. It shows
mostly meta information, but none of this
information can be drawn from the original
graph.

30

6 Discussion

The first and absolute clearest reflection of this project is that it was slightly too large. Either was a
clearer focus, or more time, required to fulfill the original goals. The whole project idea was based on
a desire to build a program where you would be able to construct a study syllabus graph. The graph
in question had already been made in another program which, among other things, left the flexibility
and modularity much to be desired. However, the focus shifted quite quickly towards improving
the existing graph. From this focus shifted more and we wondered what other graphs that were
interesting. What else can students and course administrators might want to know?

The application itself worked to create the study syllabus, both for individual students and entire
program. Nonetheless, the version that should be considered as a proof of concept.

From a personal point of view, this project has been invaluable. First of, the freedom of choosing
platform was a great way of develop personal skills within web programming. Second, the numerous
of tools and visualizations that has been discovered throughout the project is now an arsenal of both
inspiration and available options for future work.

This chapter will go through the methods, graphs and the system, and list some reflection as well
as possibilities for future work.

6.1 Methods discussion

The methods used in this project was merely used for personal development. They could, and
probably should, be done more consistently to produce better results. But with the short time span
that a master thesis has to o↵er, this has been one of the cutbacks.

6.2 System improvements

Making a list of system improvements is just slightly harder than inventing a time machine, but those
listed here are improvements that could be possible in the near future.

6.2.1 Export possibilities

Being able to export the visualized data is a feature that was not discussed within this project.
However it is something to keep in mind for future development. Being able to export graphs in
vector format could make them usable in external presentations using Microsoft Powerpoint, Adobe
Creative Suite, etc.

One preferable format would be to export information to the DOT language, which is a description
language for graphs. The DOT language supports function-like statements to create di↵erent types
of graphs, attributes, relations etc. The .dot files can be edited in plain text editors. Also, the CSV
format, when dealing with large sets of data.

6.2.2 Multiple views

One of the goals of this application was to be able to visualize the courses, there correspondence and
connectivity. This should be made from planning and testing di↵erent study syllabuses. The natural
users of such a feature should be the students. Being able to see the e↵ects and possibilities from
their picks, and from that ease their way to an exam is a powerful tool that could be implemented
on some domain such as the Student Portal.

6.2.3 Selma Connectivity

A big part of making this application useful for students is by providing a connection to the actual
course database, Selma DB. Accurate course information is a must if a live version of this application
should see the light of day.

6.2.4 Better user feedback

The planning sections could feature better and more diverse feedback. For example, displaying
amount of points selected or displaying whatever some mandatory courses has been left out.

6.3 Graph improvements

The graph could, of course, be endlessly improved, but the goal for this thesis is that these graphs
has planted some new ideas in the head of the reader.

31

New graphs could for example be produced to visualize the courses in relation to their points in
the course evaluation. This could be useful when doing inventory, and perhaps, decide on new courses
within the program.

Graphs that visualized skills that are not formally assessed in courses, are also of great interest.
This could be used to show the skills that are not directly connected to a study program. For example,
finding a way of visualizing courses in which report writing, or perhaps code writing, are used and
developed.

32

7 Conclusions

The project seemed quite successful. In particular, the graphs produced in response to the original
course graph. This is something that hopefully can be further developed where the next step is a
fully operational system oriented in a larger user group.

It has been useful to twist and turn on the di↵erent parts, both the graph and application, to
know what should be created in a first sharp version. The program coordinator had a very clear
picture, which was probably similar to his original graph, but the project has questioned this and
e↵ectively come up with several possible options, many of which would work better.

The project did not reach the original ambitions and wish of the program director, that it would
result in a finished product. But I believe that we’ve come a far way and answered some questions
that may have arose during the implementation. Mainly, if the original tree structure graph was the
best way of describing and visualizing the program. This has not yet been decided, but chances are
big that some of the graphs created within this thesis, or alternations, will be used.

The web based prototype was quite useful in demonstrating what could be done with a web
interface. There were no platform requirements at the beginning of the project, but this now looks
like a settled issue. The use of web interface enables incorporation with other University services,
such as the Student Portal.

Some of the possible objections that some might have towards this thesis should also be addressed.
There are many issues that needs to be solved before this thesis can be concretized into some kind
of product. For example, this report doesn’t deal with any of the security issues that comes with the
use of a web based application.

The project should also feature a better synchronization with the course database, Selma. It has
not been proposed how to deal with the information when testing new setup of courses and playing
around with ideas. From the perspective of this application, Selma is a read only database. No
information should be altered from this tool. But some information might just have to be, in order
to try out new ideas. This multiple database structure and synchronization is yet to be solved.

The biggest success of this master thesis was analyzing, questioning and present improvements to
the original graph. The tool is mainly used to present courses to others although it has never been a
subject of analysis or evaluation among its audience.

The problem has been concretized. The next step is to do the same with the solution.

33

8 Acknowledgements

Mattias Larsson, for his substantial work prior to this project. Bjrn Victor, whom with little con-
straints allowed me to take this project in a direction where I developed my skills in web programming.
Mikael Laksoharju for guidance, feedback and patience. Åsa Cajander, for all great feedback. My
fellow colleagues Erik Hedberg and Anders Lisspers for their priceless programming knowledge and
input when building the application.

Written in LATEX

34

References

[1] Alain Abran and James W. Moore. Guide to the Software Engineering Body of Knowledge.
Unknown, 2004.

[2] Douglas Brown. Zend framework vs CakePHP framework, December 2008.

[3] Michael Christel and Kyo C. Kang. Issues in requirements elicitation, 1992.

[4] Mary Jo Davidsson, Laura Dove, and Julie Weltz. Mental models and usability, November 1999.

[5] James Hobart. Principals of good GUI design, October 1995.

[6] Caroline Jarret and Gerry Ga↵ney. Forms that Work Designing Web Forms for Usability. Morgan
Kaufmann, 2008.

[7] Sean Michael Kerner. Google data joins PHP zend framework. InternetNews.com, December
2006.

[8] Martin LaMonica. IBM backs open-source web software. CNET News, February 2005.

[9] Mattias Larsson. Systembeskrivning kursverktyg, 2011.

[10] Riccardo Mazza. Introduction to Information Visualization. Springer-Verlag, 2009.

[11] J.D. Meier, Alex Mackman, Michael Dunner, Srinath Vasireddy, Ray Escamilla, and Anandha
Murukan. Improving web application security: Threats and countermeasures, June 2003.

[12] Christer Nilsson. Selma DB tabellbeskrivning, 2010.

[13] Robert Spence. Information Visualization. Addison-Wesley, 2001.

[14] Edward Tufte. Beautiful Evidence. Graphics Pr, 2006.

[15] Sven Trnkvist. Smart buisness, May 2011.

35

Appendix A
The original course graph, created in yEd by Björn Victor.

Diskret
matematik

Företagsekonomi
baskurs

Processorienterad
programmering

Linjär algebra II

Envariabelanalys

Datorarkitektur
och digital
elektronik

Algebra I

Automatateori

Imperativ objektorienterad
programmering

Programkonstruktion
och datastrukturer

Linjär algebra
och geometri

A

A

B C D

1 1 4

D

B

E

E

1

3

Introduktion till IT

Studieteknik

Baskurs i matematik

F3

G

1

G
Datakommunikation 1

Signaler
och system

Beräkningsvetenskap DV

C Informationsutvinning 1

H

3

H

Kryptologi

Kompilatorteknik

I1

I Flervariabelanalys

J Storskalig programmering

J1

C1

L

L2

M1

M Avancerad datorarkitektur

N1

N Realtidssystem

N1

O

Digital design
m VHDL

O2

P
Programmering av

inbyggda system

P3

Q
Modellbaserad utveckling

av inbyggda system

Q3

G1

R

Transformmetoder

R1

Modellering av dyn. sys.

S

S 4

T

Intro till datorbas.
reglersystem

T2

Signalbehandling

Sannolikhet
och statistik

V

1

V Grafteori

X2

X

Distrib. system
med projekt

Vetenskaplig visualisering

Y1

Y

Vetenskaplig
visualisering

Beräknings-
vetenskap 2

V1

Appendix B
The subway graph

Grafteori

Algebra 1

Programkonstruktion och datastrukturer

Inbyggda styrsystem
 m

ed projekt

Databasteknik 1

Signaler och inbyggda system

Optimeringsmetoder

Envariabelanalys

Distribuerade system med projekt

Intro.datorbas. reglersystem

Digital design m
ed VHDL

Kom
pilatorteknik 1

Avancerade visuella gränssnitt

Användarbarhet i praktiken
Projekt i tillämpad beräkningsvetenskap

Medicinsk informatik

Flervariabelanalys

Linjär Algebra 2
Linjär algebra och geometri

Företagsekonomi baskurs

Diskret matematik

Datakom
m

unikation 2

Databasteknik 2

Beräkningsvetenskap DV

Programmering av parallelldatorer

Datoriserad bildanalys 1

Komplex analys

Program
varukteknik

Säkra datorsystem
 1

Gränssnittsprogrammering 1

Användarcentr. systemdesign

Avancerad interaktionsdesign

Kompilator projekt

Algoritmer och datastrukturer 2

Examensarbete

Processorienterad program
m

ering

Programmering av inbyggda system

Modellbaserad utveckling av inbyggda program

Trådlös kommunikation i inbyggda system

Fle
rva

ria
be

lan
aly

s

In
fo

rm
at

ion
su

tvn
inn

ing
 II

Sa
nn

oli
kh

et
oc

h s
tat

ist
ik

Hög
pr

es
tan

da
be

räk
nin

ga
er

Programvaruteknik m. Java

Kryp
tologi

Grä
ns

sn
itts

pr
og

ra
mmer

ing
 2

M
än

nis
ko

r i
 ko

m
pl

ex
a

sy
ste

m

IT,
 et

ik
oc

h o
rg

an
isa

tio
n

Datorarkitektur och digital elektronik

Sälvständigt arbete

Uppsatsmetodik

M
od

ell
er

ing
 a

v d
yn

. s
ys

te
m

%B
UPS
HSB

mL
Säkr

a d
ato

rsy
ste

m 2

Data
ko

mmun
ika

tio
n 3

Ve
ten

ska
plig vis

ua
lise

rin
g

Beräkningsve
tenska

p 2

Fle
rva

ria
bela

na
lys

M
än

nis
ka

-d
at

or
int

er
ak

tio
n

Tra
ns

for
mmeto

de
r

In
tro

du
kt

io
n

till
 In

fo
rm

at
io

ns
te

kn
ol

og
i

Bas
ku

rs
i m

ate
mati

k

Im
pe

ra
tiv

 o
bj

ek
to

rie
nt

er
ad

 p
ro

gr
am

m
er

in
g

Automatateori

Da
ta

ko
m

m
un

ika
tio

n
1

IT
 i s

am
hä

lle
t

Ob
jek

tor
ien

ter
ad

 d
es

ign

St
or

sk
ali

g
pr

og
ra

mmer
ing

Av
an

ce
rad

 da
tor

ark
ite

ktu
r

Kognitiv psykologi

Realtidssystem

Informationsutvinving 1

Villkorsprogrammering

Signalbehandling

Datavetenskapens didaktik

Projekt IT

Beräkningsve
tenska

p 3

St
.te

k.

Reglerteknik 2

Appendix C
The circle graph

Realtidssystem
Signalbehandling

Reglerteknik II

Introduktion till datorbaserade reglersystem

Digital design m
ed VHDL

Inbyggda styrsystem
 m

ed projekt

Programmering av inbyggda system

Modellbaserad utveckling av inbyggda programTrådlös kommunikation inbygda system

Modellering av dynamiska system

Baskurs i m
atematik

Tr
an

sfo
rm

m
et

od
er

Fl
er

va
ri

ab
el

an
al

ys
A

lg
eb

ra

En
va

ria
be

la
na

ly
s

Gr
af

te
or

i Baskurs i m
atem

atik

Linjär algebra II

Linjär algebra och geometri

Diskret matematik

FlervariabelanalysKomplex analys
Sannolikhet o

ch sta
tist

ik

Kognitiv psykologi

Medicinsk informatik

Avancerade visuella gränssnitt

Anvä
ndbarh

et i
praktik

en

Grä
ns

sn
itt

sp
ro

gr
am

m
er

in
g

I

Av
an

ce
ra

d
in

te
ra

kt
io

ns
de

si
gn

An
vä

nd
ar

ce
nt

re
ra

d
sy

st
em

de
si

gn

G
rä

ns
sn

itt
sp

ro
gr

am
m

er
in

g
II

IT
, e

tik
 o

ch
 o

rg
an

isa
tio

n

M
än

nisk
or i

 ko
m

plex
a s

ys
te

m Inform
ationsutvn

inning I

Villkorsprogrammering Datavetenskapens didaktik

Kompilatorteknik I

Databasteknik II

Kompilator projekt

Algoritm
er och datastruktur II

Inform
ationsutvninning II

M
edicinsk inform

atik
A

vancerade visuella gränssnitt

Användbarhet i praktiken

G
ränssnittsprogram

m
ering I

Avancerad interaktionsdesign

Användarcentrerad systemdesign

Gränssnittsprogrammering II
IT, etik och organisation

Människor i komplexa system

In
tr

od
uk

ti
on

 t
ill

 IT

Im
pe

ra
ti

v
ob

je
kt

or
ie

nt
er

ad
 p

ro
gr

am
m

er
in

g

D
at

ak
om

m
un

ik
at

io
n

I

M
än

ni
sk

a-
da

to
ri

nt
er

ak
ti

on

IT
 i

sa
m

hä
lle

t

O
bj

ek
to

rie
nt

er
ad

 d
es

ign

St
or

sk
ali

g p
ro

gr
am

m
er

in
g

Ava
nce

ra
d dato

ra
rki

tek
tu

r

Data
baste

knik I

Programkonstr
uktio

n och datastr
ukturer

Distrib
uerade system med projekt

Processorienterad programmering

Programvaruteknik Säkra datorsystem I Datakommunikation II
Datorarkitektur och digital elektronik

Programvaruarkitektur med Java

'DWRUJUDȴN

Kryptologi

Säkra datorsystem II

Datakommunikation III

Företagsekonomi
Automatateori

Projekt IT
Studieteknik

U
pp

sa
ts

m
et

od
ik

Sj
äl

vs
tä

nd
igt

 a
tb

et
e

Appendix D
The study syllabus graph

